viernes, 16 de septiembre de 2022

Energía generada electro-imán. (energía libre?)






(J=W*s ;julios igual vatios por segundo)

1 eV = 1,620 10^-19 J

1 J = 6,1728 10^18 eV

1 julio o joule (J) es igual a 6.241509⋅1018 electron-volts (eV) *sacado de internet.

Sobre electro-imanes.

Sabiendo que los iones de protio (isótopo de hidrógeno) y otros iones en el magnetismo o dimensión magnética, generan la energía de la electricidad circulando por el campo magnético.(Teoria del Todo)

Se puede explicar el funcionamiento por ejemplo de los electro-imanes.

En los electro-imanes con núcleo (metal), este núcleo multiplica el campo magnético generado por la bobina al pasar los iones por el (el núcleo de metal): pues alinea el campo magnético de los átomos del metal, (a parte de generar calor por la desintegración de los iones) .

El efecto es como apilar imanes.

Sabiendo esto:

Un electro imán debería ser capaz de absorber iones y generar calor al chocar algunos iones con los átomos del metal del núcleo.

La bobina no debería calentarse en principio pues el campo magnético pasaría por el núcleo, debería generar energía; no de la" corriente" sino de los iones absorbidos no sería fusión exactamente. Todos los electro-imanes se calientan y es por esto habría que ver que les pasa si los expones a diferentes dosis de radiación si pueden proteger de esta como la tierra lo hace con su campo magnético del viento solar. 

Energía generada electro-imán.

Fundir metal por inducción.

(Pese a que no tiene núcleo de hierro que aumente el efecto magnético de la bobina un horno de fundición de metales me parece interesante pues tiene una bobina que genera un campo magnético.)

De la misma manera que funcionan las cocinas eléctricas; por inducción también hay maquinas que funden metal, y revisando maquinaria industrial realicé unos cálculos.

"Como se mencionó anteriormente, el consumo de energía estándar para la fundición de chatarra ligera de aluminio requiere 600 a 625 kWh/tonelada (considere un promedio de 612,5 kWh). Eso significa que una tonelada de chatarra ligera de aluminio requiere de 600 a 625 kWh". 

 

Cálculo:

1 W (vatio) = 1 J (julio) * s (segundo)

1 kW⋅h = 3,6 MJ

625 kWh → 2.250 MJ (mega julios) para fundir 1000 Kg


2.250.000 J → 1 Kg

Vamos a calcular que energía tiene el aluminio fundido de 660 ºC respecto al aluminio solido de 0ºC y usaremos ese valor para orientarnos.


Energía para fundir un kilo 900 julio/kilogramo”

Calor específico: El calor específico de una sustancia se define como la cantidad de julios (o calorías) necesaria para cambiar la temperatura de exactamente 1 g de una sustancia por exactamente 1 C. “

La capacidad calorífica es la cantidad de calor absorbida (emitido) todo el cuerpo en proceso de calentamiento (enfriamiento) por 1 Kelvin. “

En termodinámica, la entalpía de fusión de una sustancia, también conocida como calor (latente) de fusión, es el cambio en su entalpía resultante de proporcionar energía, típicamente calor, a una cantidad específica de la sustancia para cambiar su estado de un sólido a un líquido, a presión constante. Por ejemplo, al derretir 1 kg de hielo (a 0 °C bajo un amplio rango de presiones), se absorben 333,55 kJ de energía sin cambio de temperatura. El calor de solidificación (cuando una sustancia cambia de líquido a sólido) es igual y opuesto.”

datos (1):

Masa atómica aluminio: 26,9815386 u gramos por mol (sale de la tabla periódica)

Calor especifico del aluminio: 0.9 J/g K.

Punto de fusión Aluminio: 933,47 K (660 °C)

Entalpía de fusión aluminio: 10,71 kJ/mol


datos(2):


Sustancia

T fusión ºC

Lf ·103 (J/kg)

T ebullición ºC

Lv ·103 (J/kg)

Hielo (agua)

0

334

100

2260

Alcohol etílico

-114

105

78.3

846

Acetona

-94.3

96

56.2

524

Benceno

5.5

127

80.2

396

Aluminio

658.7

322-394

2300

9220

Estaño

231.9

59

2270

3020

Hierro

1530

293

3050

6300

Cobre

1083

214

2360

5410

Mercurio

-38.9

11.73

356.7

285

Plomo

327.3

22.5

1750

880

Potasio

64

60.8

760

2080

Sodio

98

113

883

4220

Fuente: Koshkin N. I., Shirkévich M. G.. Manual de Física elemental, Edt. Mir (1975) págs. 74-75.

 

 



Total:

Total:


Earlier we calculated 396.93 kJ to go from solid to liquid.

594 kJ+ 396.93 kJ

990.93 kJ

Using data(2)

0.9 J/g K * 658.7 K =0.9 kJ/kg K * 658.7 K= 594 kJ to raise the temperature by 658.7 K to one kilo.

Total:

592.83 kJ

592.83 kJ +322 kJ

914.83 kJ

Energy of a kilo of aluminum already melted at 660°C compared to solid aluminum at 0°C

914.83 kJ is needed for a kilo of aluminum to melt from 0ºC to 660ºC at least. For that is the energy it possesses at that temperature.

The machinery has needed

2250 kJ

So it does not generate energy in the form of heat (it was a scrap melting machine).

Or so it seems.

It happens that aluminum is not ferromagnetic and does not multiply the effect of the electromagnet, and does not affect because the protons or ions have been attracted by electricity even so the heat has been generated by the disintegration of these as we have seen before.

Ferromagnetic materials would be:

Iron (Fe)

Cobalt (Co)

Nickel (Ni)

Steel alloys

etc.

With ferromagnetic materials, electro-magnets can be created by the effect I described above.

"An object is considered ferromagnetic if a magnet sticks to it."


"Is aluminum ferromagnetic?

Aluminum is one of the paramagnetic metals, which means that magnets only weakly attract it. So weakly that you might think that they have no influence on aluminum. However, the video presented to you here demonstrates that magnets do have an effect on aluminum."

 


The information I have:


Energy consumption to melt 1 ton metals in one hour:


For melting cast iron it takes 550-575 kWh/ton.

For SG Iron melting it requires 550-600 kWh/ton.

For Stainless Steel/Steel melting 600-650 kWh/ton is required

For Aluminum light scrap melting 600-625 kWh/ton is required.

500-575 kWh/ton is required for melting Aluminum chopped scrap.

For steel melting 625 kWh/ton is required.

 

 Weight per cubic meter metals:


Steel 7850 kg/m³ ?

Aluminum 2700 kg/m³ 26.9815

Bronze with tin 8900 kg/m³ ?

Bronze with lead 8700 kg/m³ ?

Copper 8960 kg/m³ 63.5460

Iron 7300 kg/m³ 55.8450

Brass 8560 kg/m³ ?


Aluminio

2700 kg/m³

26.9815 g/mol

600-625 kWh/ton

Cobre

8960 kg/m³

63.5460

?

Hierro

7300 kg/m³

55.8450

550-575 kWh/ton

Acero

7850 kg/m³

?

625 kWh/ton

Aluminio (chatarra troceada)

?

?

500-575 kWh/ton


Aluminum with 2700 kg/m³ is the lightest but requires 600-625 kWh/tonne.


Iron with a density of 7300 kg/m³ per cubic meter is 2.7 times denser than aluminum.



For the same weight:



For the melting of light Aluminum scrap 600-625 kWh/ton is required.


500-575 kWh/ton for the melting of aluminum scrap


Cast iron melting requires 550-575 kWh/tonne



Aluminum 0.0269815 Kg/mol


Iron 0.0558450 Kg/mol



0.0000269815 Ton/mol 37,062.4316 mole of Aluminum per ton of Aluminum.


0.0000558450 Ton/mol 17,906.7060 mole of Iron per ton of Iron.



There are 2.0697 times as many moles of aluminum as of iron in a ton.


And the mole of iron is 2.0697 times heavier than the mole of aluminum.



The energy of melting cast iron for the machine 575 kWh


and I calculate the joules:



575 kWh


575 000 W * 3600 s


2,070,000,000,000 J/s (W)


2.250 kJ → 1 Kg Aluminium.


83.390,4711 kJ * 37,0624 mol → 0,4444 J/mol


2,070 kJ → 1 Kg Iron.


37.066,88142 kJ * 17,9067 mol → 0,4830 J/mol



Despite the difference in density and weight per cubic meter the performance of the machines is similar in terms of heat in joules to melt one mole.


I continue with the checks:


Stationary Acutrak®


Power Density


150 Kilowatts per Ton


Power Requirements


167 KVA, 460/480 Hz, 50/60 Hz

https://www.inductotherm.com/products/acutrak-direct-electric-heat-deh-system/

for 167 KVA


approx 0.9 power factor


150300 W (150 kW per Ton)


for one ton 1 T or 1000Kg


(150 kWh/T)=


in one hour 60 minutes * 60 seconds


150300*(360)


54.108.000 J



I will calculate the results in electron volts as well:


"The electron volt is a unit of energy that represents the energy variation experienced by an electron when moving from a point of potential Va to a point of potential Vb when the difference Vba = Vb-Va = 1 V, that is, when the potential difference of the electric field is 1 volt."


3.3771558755e+26 eV


914,830,000 J minimum to melt 1000 kg of aluminum from 0 to full melting.


5.7099 10^27 eV


i.e:



But with initial data (not catalog data):


625 Kilowatt hours would consume to melt 1000 kilos of aluminum


2.250.000.000.000 J to melt 1000 kg


1.4043 10^28 eV


Something strange is going on here...

I look at industrial machinery below.



https://www.induction-furnace.com/products/aluminum-melting-furnace/

Aluminum Melting Furnace

 

Miro maquinaria industrial a continuación.


https://www.induction-furnace.com/products/aluminum-melting-furnace/

Aluminum Melting Furnace



Model

Power Control Cabinet

Furnace Body

Associated TransformerKVA

Power

Voltage

MF Voltage

Cabinet Size(mm)

Frequency

Weight

Furnace body Size(mm)

Induction Coil Inner Diameter

Weight

0.1T

80kw

3×380v

750v

1000×800×1700

2500

0.5T

Φ730
Aluminum shell

Φ500

0.7T

125

0.25T

180kw

3×380v

750v

1300×850×2000

2000

0.8T

Φ1100
Aluminum shell

Φ580

1T

250

0.35T

200kw

3×380v

750v

1300×850×2000

1500

0.8T

Φ1100
Aluminum shell

Φ700

1.2T

400

0.5T

400kw

3×380v

1500v

1300×850×2000

1500

1T

Φ1250
Aluminum shell

Φ760

1.5T

500

0.75T

600kw

3×380v

1500v

1300×850×2000

1000

1T

Φ1350
Aluminum shell

Φ840

1.6T

630

1T

700kw

3×660v

2400v

1300×850×2000

800

1.2T

Φ1400
Aluminum shell

Φ960

1.8T

900

1.5T

8000kw

3×660v

2500v

1300×850×2000

600

1.2T

Φ1700
Aluminum shell

Φ1150

2.5T

1250

2T

1000kw

3×660v

2500v

1300×850×2000

600

1.6T

Φ1700
Aluminum shell

Φ1350

3T

1600

3T

1500KW

3×950v

3200v

2400×1000×2000

500

1.6T

Steel shell

Φ1450

12T

2500

5T

2000KW

6×950v

3400V

2400×1000×2000

500

2.5T

Steel shell

Φ1800

19T

3300





Product Introduction

The heating furnace is mainly used for heating of metal materials before forging, extrusion, hot rolling, shearing, and heat treatment of metal materials, such as quenching, tempering, tempering and the like. Heating temperature is between 200-1200 degrees.



  • Pre-forging heating: applied to gear, ring gear, bearing, shackle, rigging.

  • Online heating: Pipe anti-corrosion coating, long steel rod heating, steel (wire) tube online quenching and tempering.

  • Local heating: U-bolt bending, thermal assembly of the drumSteel pipe elbow etc.



Product Features



The induction coil is insulated by two insulation treatment, high temperature insulating paint and fiberglass ribbon winding.

The top of the furnace body is designed with sliding cover, which is convenient for maintenance and inspection.

  • Equipment installation and operation is simple.

  • Equipment covers a small area

  • Stable and reliable heating temperature

  • Power consumption280kwh/ton



Technical Parameter

Technical Parameter

Model

Power Input(3-Phase 4-Wire 50/60Hz)

Power Output

Capacity(Kg/h)

Power

Voltage

Current

DC Current

DC Voltage

MF Voltage

MF Frequency

Steel

Copper

Aluminum

KGPS-50

50KW

380V

80A

100A

500V

750V

1-8KHZ

125

282

234

KGPS-50

50KW

380V

80A

100A

500V

750V

1-8KHZ

125

282

234

KGPS-750

750KW

380V

660V

1200A

680A

1500A

850A

500V

880V

750V

1300V

0.2-6KHZ

1875

4230

3510

Working Temperature: Steel 1250℃, Copper 900℃Aluminum 500℃

Power Consumption:  Steel 350-550KWH/T, Copper 150-300KWH/T, Aluminum 180-400KWH/T



I will calculate the maximum consumption: 400kWh per ton.

400kWh per 1000 Kg

400000Wh per 1000 Kg

1,440,000,000 W(J) in one hour.

1,440,000,000 joules(W) per kilo.

Electron-volt

8.9877 10^24 eV per kilo.


Para el modelo KGPS-50

potencia de entrada: 50KW 380V 80A

potencia de salida: 100A 500V (DC)

Capacidad: 234Kg/h


We calculate:

50000 W

18,000,000 J in one hour (234 Kg)

76,923,0769 J one kilo

76.923.076,923 J 1000 Kg (1 T)

76.923.076,923 J/(1 T) / 18.000.000 J in one hour (234 Kg)

4.2735 hours to melt 1000 Kg (1 T)

4.8011610333 10^26 ( one joule or joule (J) is equal to 6.241509⋅1018 electron-volts (eV))

50000 W * 4.2735 h

213.675 kWh/T


that system would need 213,675 kWh/h to melt 1000 kg (1T) in one hour then

is within the range: Aluminum "180-400KWH/T" and what they suggest "Power consumption 280 kwh/ton".


compare with previous system: (Acutrak® Melting Systems aluminum melting machine from www.inductotherm.com (150 Kilowatts per Ton per Hour)).


167 kVA now at 380


=253.73 A

=96.417,4 W


34,710,264 J an hour (almost double)


and if they had the same efficiency it would have melted:



34,710,264 / 76,923.0769 J one kilo.

451.2334 kg in one hour

2.21614 h to melt 1000 Kg(1 T) or

76.923.082,3782 J to melt 1000 Kg (1 T)


54.108.000 J to melt 1000 Kg (this is the data that gives 150 kW/T) so the first one was more efficient but they are very similar in performance.


I recalculate the minimum energy to melt aluminum with another method and get out of doubt.


 

Formula used:

"Thermal energy = Specific gravity of material*Volume of molten metal*(Specific heat capacity*(Base metal melting temperature-Ambient temperature)+Latent heat of fusion).


Q = (SG*V*(c*(Tm-ta)+ΔHf)*4.2)/(1-R)


This formula uses 8 Variables.

Variables utilizadas:


Thermal energy - (Measured in Joule) - Thermal energy is the total amount of heat required.


Material specific gravity - Material specific gravity is a dimensionless unit defined as the ratio of the density of the material to the density of water at a specific temperature.


Molten Metal Volume - (Measured in Cubic Meter) - Molten metal volume is defined as the volume of material removed during the LBM process.


Specific heat capacity - (Measured in joule/kilogram/K) - Specific heat capacity is the heat required to raise the temperature of the unit mass of a given substance by a given amount.


Base metal melting temperature - (Measured in Kelvin) - The melting temperature of the base metal is the temperature at which its phase changes from liquid to solid.
Ambient temperature - (Measured in Kelvin) - The ambient temperature is the temperature of the surroundings.


Latent heat of fusion - (Measured in joule/meter³) - The latent heat of fusion or enthalpy of solidification is the heat released during solidification. Enter the magnitude only. It is taken negative by default."

https://image.slidesharecdn.com/contenidos-fundamentos-termodinamica-120113182859-phpapp01/95/contenidos-fundamentostermodinmica-17-728.jpg?cb=1326480530

 

2.7 Specific gravity of the material [SG] times density water with respect to water

1 Volume of molten metal [V] cubic meter

8.96 Specific heat capacity [c] kilojoule per kilogram

933.47 K Melting temperature of the base metal [Tm] kelvin

0°C + 273.15

= 273.15 K Ambient temperature [ta] kelvin

3.97*10^5 (J per kilo) *2700 (kg per meter³ ) = 1,071,900,000 J Latent heat of fusion [ΔHf] joule meter3

0.9 Reflectivity of the material [R]"

 

I have adjusted the formula for the data I have:

Q = (SG*V*c*(Tm-ta))+ΔHf



(2,700 kg × 1 m³ × 8.96 kJ/kg × (933.47 ºK - 273.15 ºK)) + 1,071,900 kJ


(2,700 kg × 5,916.4672 kJ) + 1,071,900 kJ

1.597.446,44 kJ + 1.071.900 kJ

2.669.346,44 kJ for 2700 kg

988,6468 kJ for 1 kg

988,646.829 kJ for 1000 kg

6.1706 10^27 eV for 1000 kg
I compare results for melting 1000 kg of aluminum by induction.


Calculated values for reference use:

914.830 kJ energy as minimum to melt 1000 kg of aluminum.(from periodic table data and constants).

5.7099 10^27 eV minimum energy to melt 1000 kg of aluminum (from periodic table data and constants).

988.646,829 kJ for 1000 kg of aluminum (minimum according to aluminum values and physics formulas).

6.1706 10^27 eV for 1000 kg of aluminum (minimum according to aluminum values and physics formulas).

Values calculated from manufacturer's data and available on the internet:

2,250,000 kJ per 1000 kg uses the machinery that I looked at the beginning of the article; as they say 625 kW 1h 1000 kg (as expected by generic data).

1.4043 10^28 eV per 1000 kg uses the machinery I looked at at the beginning of the article; according to 625 kW 1h 1000 kg (according to expectations by data).

1,440,000 kJ per 1000 kg (based on the industrial furnaces for aluminum smelting www.induction-furnace.com that I mentioned before (maximum energy consumption)).

8.9877 10^27 eV per 1000 kg (based on the industrial furnaces for aluminum smelting www.induction-furnace.com mentioned above (maximum energy consumption)).

76,923.0769 kJ per 1000 kg (based on the industrial furnaces for aluminum smelting www.induction-furnace.com mentioned above (for the KGPS-50 model)).

4.8011 10^26 eV per 1000 kg (based on the industrial furnaces for aluminum smelting www.induction-furnace.com that I have mentioned above (for the KGPS-50 model)).

54,108,000 kJ 1000 kg (Acutrak® Melting Systems aluminum melting machine from www.inductotherm.com (150 Kilowatts per Ton per Hour)).

3.3771 10^26 eV 1000 kg (Acutrak® Melting Systems aluminum melting machine from www.inductotherm.com (150 Kilowatts per Ton per Hour)).
Conclusion

Commercial induction machines that melt aluminum do so with less energy than expected.

 


No hay comentarios:

Publicar un comentario